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Abstract

The properties of the impedance and scattering matrix
describing waveguide discontinuities are examined; both propaga-
ting and evanescent modes are considered,

It is shown how different normalization conditions for the
normal mode solutions in the guide affect the impedance matrix,
A suitable choice of normalization always leads to a symmetric
imaginary impedance matrix for a lossless structure,

The scattering matrix is no longer symmetric or unitary, The
simple relationship S = (Z - U)(Z + U)"1 is shown to hold only
under special normalization conditions,

Next the matrices describing a plane of lossless obstacles
arranged in a periodic array are examined, A different type of
normalization condition must be used here, since the normal modes
are orthogonal in the conjugate sense (bi~orthogonal).

Although the structure is reciprocal, none of the matrices
are symmetric, A suitable normalization leads to a skew-hermitian
impedance matrix and to a unitary submatrix of the scattering

matrix corresponding to propagating modes,



Matrix Description of Waveguide Discontinuities ¢

Plane Arrays of Scatterers in the Presence of Evanescent Modes

In treating the problem of propagation of electromagnetic
waves past waveguide discontinuities it is often convenient to
define a set of equivalent voltages and currents, corresponding to
linear combinations of incident and reflected wave amplitudes, there -
upon reducing it to a circuit problem, The equivalent circuit fer
the discontinuity lends itself to description in terms of the usual
circuit type matrices such as the impedance, admittance, scattering
or other matrix,

The properties of the above matrices have been described in
the literature1’2 when only propagating modes are considered, This
is normally the case when the terminal planes on which voltages and
currents are defined are chosen far enough from the discontinuity,
However in many cases one cannot neglect the effect of the evanescent
modes, as for example when two discontinuities are closely spaced.

The purpose of this report is to study the properties of the

matrices describing waveguide discontinuities, or plane lattices

1, C.G. Montgomery, R,H, Dicke and E.M, Purcell: "Principles
of Microwave Circuits", vol, 8 of MIT Rad, Lab, Series,
McGraw-Hill Book Company, Inc., New York, 1948,

2. D, Kerns: "Basis of Application of Network Equations to
Waveguide Pmblems®, Journal of Research NBS, pp. 515-540,
May 1949,
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of scatterers, when both propagating and evanescent modes must be
considered,

It is important to note that voltages and currents are
defined quantities and as such they can be chosen in different
ways, Correspondingly the properties of the resulting matrices
will be affected by that choice, An alternate way to see this
arbitrariness in the definition of the voltages and currents is to
note that the normal mode solutions in the waveguide can be nor-
malized in different ways.

To be specific consider a rectangular waveguide with a dis-
continuity extending in the "z®™ direction from Y to z, as in

Fig. 1. The transverse fields on the two sides of the discontinuity

D:‘S(on'i;n;ib

7

Fig, 1 A general waveguide discontimity
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can be expandeds in a set of normal modes:

-T (z-2)) s I (z-z)
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e, and in are normal mode functions in the guide and are related

by means of a dyadic impedance or admittance:

n n n
(2a)
- - =Y
h =Y e
n n n
whare
- D a2 &
Z = Zn(axcy - ayax)
(2p)

3, R.E. Collin: "Field Theory of Guided Waves®™, Chapter 5,
McGraw-Hill Book Company, Inc,, New York, 1960,
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Zn and Yn are the scalar wave impedance and admittance and are
real for propagating modes and imaginary for evanescent modes,
-
The normal mode functions e, ﬁ; are orthogonal in a waveguide.
Also one of the two functions can always be chosen real, We will
-
e

assume in the following that n

is real, These functions can be

normalized in a variety of ways, some of the possibilities will

now be considered,

Let:

ra - — r r - - v
J‘ | e, X hm e dS =Y " e, en ds YmNnﬁnm (3)
where S denotes the waveguide cross section and Nn is a real posi-
tive normalization constant, arbitrary as yet.
We choose the voltages to be proportional to the amplitude
of the transverse electric field and the currents proportional to

the amplitude of the transverse magnetic field, thus:

+ -
vn = Klnan vn = Klnbn
(4)
1t -k I"=-K_b
n 2nan n 2n n

In order to keep the complex power flow invariant it is necessary
that:



1 gty 1 # R _1 o 2
5 Vn(In) 5 K Kon lanl 5 YnNnIan[ (5a)
or:
* *
KanZn - YnNn (6v)
Also we may choose:
v Ky
< "% "%y (6)
In 2n

where ch is any convenient characteristic impedance for the equiva-
lent transmission line,
It can be seen from (5b) that for propagating modes Kln and
K2n can both be chosen real since Yn is real. However, for evanes-
cent modes at least one of the two contacts must be chosen imaginary,
One can still choose both Kln and Kax real in all cases mo-

vided the definition of complex power flow is modified as follows:
1 *® 1 2 _1 * 2
2 vn(In) 2 YnNnIan| 2 l{.LnKZnIan‘ (7a)

for propagating modes

for evanescent modes,



In (7b) the upper sign holds for H modes and the lower sign
for E modes,

Before actually choosing a specific normalization we will
first derive some general properties of the impedance matrix,

We will number the modes on the two sides of the discontinuity
in consecutive order, that is, we can define a voltage vector and

current vector (column matrix):

vevtev
(8)
1-1"-1
where
+ -
V1 v
+ + - -
V = V2 V = V2
and similarly for the currents, In view of the linearity of
Maxwell's equations we have:
Vezl (9)

where Z is the impedance matrix,
Consider first two independent solutions to Maxwell's equations

satisfying boundary conditions in the guide, The following relation



then holds in a reciprocal medium,

ve B xBR-Fxf) =0 (10)
the superscripts refer to the two independent solutions, When this

relation is integrated over a region enclosing the discontinuity

we obtain:

J'J"Jn-(ﬁ'lxﬁz-ﬁzxﬁl) dv = ‘r'r(tlxﬁz-ﬁzxﬂl) . a3

YN

1.2 2.1y 'n'n
-z(vx-vx)—-k—-o (11)
n o018 nn Kln 2n

where it was assumed that the transverse fields have been expanded

in normal modes with the normalization as given by (3).

Consider now two conditions for the terminal planes:

1 2 2

Conditionl, V; =0 nfi If=Y,V
2 1

Condition 2, Vo =0 nfj I invi

Then it follows from (11):

YN, YN -
Y -y ﬁ—l— 12
BE K, 8K K,



e

where Yi;j and in are elements of the admittance matrix, The
admittance matrix, and thus the impedance matrix, will be symmetric
if:

IN YN
_..L.L (13)

11
L. K, K23

At this point we will make the choice of normalization,

Consider the following cases:

Case I: r:-?-u -1 (14)
—— n n n

8

Using condition (5b) we must have:

We can then choose Kln = 1 and K2n - Yn- With this choice

relation (13) is satisfied and thus:

Y =Y and also 2, k6 =2

1J b i} 31
1
for propagating modes
Case II: rr?n-énds-nn- T (15)
©'8 ;ﬂ for evanescent modes
n

The (+) and (~) signs correspond to E and H modes, Again using

condition (5b) we must have:



*
Kanzn = 1 for propagating modes

K Ky = +j for evanescent modes
n 2n

This then allows us to choose:

Kln = K2n =1 for propagating modes
Kln = 1,K2n = +j for evanescent modes

With that choice relation (13) is satisfied and both the
admittance and impedance matrix are again symmetriec,

Further properties of the impedance matrix can be derived
from the energy condition, Integrating the complex Poynting

vector over a region containing the discontinuity we obtain:

%fjt'xﬁ'-db'-rwzgw(wm-we)-%;1’

(16)
where the tilda stands for the transposed matrix., If the structure

is lossless:

1 it 1 -7n o
P=0=3R(VI') =2 [1(2+2) 1]

Then
z+2%ep (17)
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since 2 = ;

We conclude that under normalization condition (14) or (15)
with the definition of complex power in t he sense of (5b) the
impedance matrix of a lossless discontinuity is symmetric and
imaginary, The same holds for the admittance matrix.

It is sometimes convenient to choose the characteristic
impedances of the equivalent transmission lines as unity for
all modes, As we have seen before condition (5b) does not allow
us that choice unless we resort to the modified definition of
complex power flow as given by (7a) and (7b), Using normalization

condition (15) we obtain:

»
KanZn =1

for both propagating and evanescent modes. It is now possible

to choose

The properties of the impedance matrix are now somewhat
different, It is convenient to partition the voltage, current
and impedance matrices as follows:

v z Z I
P [ ij [ P‘j p
- (18)

ve [ zepj [ zeej Ie
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vhere the subscripts p and e refer to propagating and evanescent

modes,

The reciprocity relation (11) now becomes:
2 2.1
IL-v,I,]=0 (19)

The upper sign holds for E modes and the lower sign for H modes,

Consider now the following conditions for the terminal planes;

0
Condition 1 [1i]- %
p {i
0
0
[ 1%7]- 9:e
p ;J
o}
With:

[v,]-z,[1] [vi] -2, ,[12]

we obtain:

Zyy =2y

The submatrix [pr] is symmetric. We now assume that

only E or H modes are present,
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Condition 2
0 0
0 0
1 . 2 "
[)-{h| [R1-|%
1 :J
0 0

we then obtain

Zij - Zji for the [zeej submatrix,

Condition 3
0 o
0 0
1 . R .
[Ip] - ! [:Ie] - ;2
pi el
é 0
With:
i 2 2 i 1
[v]-zd[] [vgd -2, [5]
we obtain:
ij S
Zpe + Jzep 0 (20)

or more generally:

[2,,] =23 02,3
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If we now impose the energy condition for a lossless

structure on the impedance matrix we have:

]
=0 = v 1 v I
P=0=Re[ IV, £ o = Re[ Ip op pj

+ Re[*JI Z I j *RB[I Z I ] M Re["jle epIp]

Therefore:

[pr] * [Z;pj =0 [prj is imaginary

[Zeej - [Z:e] =0 [zeej is real

Also:
> -
Ip[ Zpe + JZep]Ie -0
Therefore:
- T
[zpe * g2, I-0
but + :)Z p] 0
Then:

B 7 I IF 2, ]

xS
[Zep + Zepj =0

(21)
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Therefore [zep:] is imaginary

[ zpe:l is real

An alternate description of waveguide discontinuities is by
means of the scattering matrix,

We define the matrix by:

V- =8V (22)

If we choose Kln = K2n = ] for all modes then:

Vavt e v az(@te1) =2(vt - V)

(z -0V = (2« V)V

and Se(z+U)} (z-0) (23)

The matrix S given by (23) is not symmetric since Z is not
symmetric for this case, Alsc S is not an unitary matrix any more,

Condition (14) and (15) do not lead to a simple relationship
between the impedance matrix and the scattering matrix, because
the characteristic impedances of the equivalent transmission lines

are real for propagating modes and imaginary for evanescent modes,



Case 1 J ' e

~15=

The properties of the scattering matrix as given by (23) will be
studied in a later part of this report.

We now consider a plane of lossless obstacles arranged in a
periodic array; no longer is it possible here to use normalization
conditions (14) or (15) because the normal mode solutions in the
structure are always complex such as to satisfy periodic boundary
conditions in the transverse plane,

The following normalization procedure, in the conjugate sense,
can be used for both a lossless discontinuity in a guide and an
array of lossless scatterers,

Let:

"e xhtad-y T
m

genx ;g

where S denotes the croses section of the unit cell in the structure

e e das=1YN 6 (24)
n m mnnm

and Nn is a positive real normalization constant,

It should be noted that it is still possible to normmalize
the modes in a lossless periodic structure as in (14) or (15)
provided one restricts propagation to incidence normal to the
plane, That is indeed the case since the E and H modes are
orthogonal in a periodic structure of this sort just like in a wave-

gulde. Again consider two cases:

Fea

o
n | ®n ds = Nn =1 (25)

8
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fL for propagating modes
r\
Case II | St omas {7 (26)
5 4%- for evanescent modes

n
The upper sign holds for E modes and the lower for H modes. A
reciprocity relation can be written for the field in the struc-
ture as follows:

. (El

x ﬁ*z + %2 ﬂl) =0 (27)
However, this relation assumes a lossless structure, There-
fore, it is easier to use directly the energy condition.
The complex Poynting vector integrated over the terminal
planes of a unit cell ylelds
1 r 1 5o
7| B . a3 2je(M - W) =1 VI (28)
if one defines complex power in the sense of (S5b) with normalization
given by (25) or (26).

The structure is lossless so

P=0-= % Re(VI") = % (T%21 + T2 1)

~

or2+ 7" = 0. The impedance matrix is thus skew hermitian,
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However, if normalization condition (R6) is used together

with the power definition (7a) and (7b) the complex integration
yields:

) * ™ ™
YA + +31°Z2 I + Z I) +R(+3jI Z 1) =0
Re (1 ppzp) Re(231,2,,1,) * Re(I Z 1) (231gZ¢p 1)

where [ 27] is partitioned as in (18). We must then have:

Epe-.]{;;;]. 0 or [zp;Jis skew - hermitian
[ed - [:;' =0 or Eeg is hermitian
ARt

This impedance matrix is related to the scattering matrix by
means of relation (23), No simple relationship exists between the
S and Z matrices obtained from any other normalization,

To obtain the properties of the scattering matrix we partition

it as follows:
o1 B Bol][%
Vol Lo Bedf L%

(29)

The real power is given by:
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~ * ~ * ~ * ~ *
Pe0o= (V) V- (V) Ve[V V) - () V)] -0
(30)
for a lossless structure,
Using (29) this becomes:

~ % ~ ~ W ~

+* » + S * - +
v U-8 8 v - (V S <+ 3j(s -8 v
( P) [ PP ij p ( e) Espe e J( ee ee)J e

*
~ “ - + et = Th ) +
- (V S + 3S v - (V S + i3S V =0
(V) [8peSpp * 3865 Vp = (V) LSpeSre & epI Ve

This then ylelds:

B ][] or B, s wnitars
oo - 53 296
e g2 o) 0

The above scattering matrix is defined with normalization given by
(26) and power definition given by (7a) and (7b).

In conclusion we have shown that for a lossless discontinuity
in a waveguide it is always possible to choose the equivalent
voltages and currents such as to obtain an impedance matrix which
is symmetric and imaginary just like in the case when only propaga-

ting modes are present, For this case however the characteristic
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impedances of the equivalent transmission lines are real for propa-
gating modes and imaginary for the evanescent modes,

If one tries to make all characteristic impedances of the
transmission lines real for all modes the corresponding impedance
matrix is no longer symmetric or imaginary,

For a periodic array of scatterers it is possible to choose
voltages and currents such that the impedance matrix is skew-hermitian.
Although the structure is reciprocal the impedance matrix is not
symmetric,

The scattering matrix is no longer symmetric or unitary in
either case; it is only possible to obtain a unitary submatrix

corresponding to propagating modes,
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